
Map Reduce & Spark

Utah Distributed Systems Meetup and
Reading Group - Map Reduce and Spark

JT Olds

Space Monkey
Vivint R&D

January 19 2016

Map Reduce & Spark

Outline

1 Map Reduce

2 Spark

3 Conclusion?

Map Reduce & Spark

Map Reduce

Outline

1 Map Reduce

2 Spark

3 Conclusion?

Map Reduce & Spark

Map Reduce

Map Reduce

1 Map Reduce
Context
Overall idea
Examples
Architecture
Challenges

Map Reduce & Spark

Map Reduce

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds ofMapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.
As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.
The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.
Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 137

Map Reduce & Spark

Map Reduce

Context

Map Reduce

1 Map Reduce
Context
Overall idea
Examples
Architecture
Challenges

Map Reduce & Spark

Map Reduce

Context

Google Map Reduce context

Lots of conceptually simple tasks
On an internet’s worth of data
Spread across thousands of commodity servers
That are constantly failing

Map Reduce & Spark

Map Reduce

Context

Google Map Reduce context

Lots of conceptually simple tasks
On an internet’s worth of data
Spread across thousands of commodity servers
That are constantly failing

Map Reduce & Spark

Map Reduce

Context

Google Map Reduce context

Lots of conceptually simple tasks
On an internet’s worth of data
Spread across thousands of commodity servers
That are constantly failing

Map Reduce & Spark

Map Reduce

Context

Google Map Reduce context

Lots of conceptually simple tasks
On an internet’s worth of data
Spread across thousands of commodity servers
That are constantly failing

Map Reduce & Spark

Map Reduce

Context

Google Map Reduce context: abstraction?

Parallelize the computation
Distribute the data
Handle failures
With simple code

Map Reduce & Spark

Map Reduce

Context

Google Map Reduce context: abstraction?

Parallelize the computation
Distribute the data
Handle failures
With simple code

Map Reduce & Spark

Map Reduce

Context

Google Map Reduce context: abstraction?

Parallelize the computation
Distribute the data
Handle failures
With simple code

Map Reduce & Spark

Map Reduce

Context

Google Map Reduce context: abstraction?

Parallelize the computation
Distribute the data
Handle failures
With simple code

Map Reduce & Spark

Map Reduce

Overall idea

Map Reduce

1 Map Reduce
Context
Overall idea
Examples
Architecture
Challenges

Map Reduce & Spark

Map Reduce

Overall idea

Google Map Reduce: Map

map (n1,d1) → [(k1, v1) , (k2, v2) , ...]

Map Reduce & Spark

Map Reduce

Overall idea

Google Map Reduce: Map

map (n1,d1) → [(k1, v1) , (k2, v2) , ...]

map (n2,d2) → [(k3, v3) , (k1, v4) , ...]

Map Reduce & Spark

Map Reduce

Overall idea

Google Map Reduce: Reduce

reduce (k1, [v1, v4, ...]) → r1

Map Reduce & Spark

Map Reduce

Overall idea

Google Map Reduce: Reduce

reduce (k1, [v1, v4, ...]) → r1

reduce (k2, [v2, ...]) → r2

Map Reduce & Spark

Map Reduce

Examples

Map Reduce

1 Map Reduce
Context
Overall idea
Examples
Architecture
Challenges

Map Reduce & Spark

Map Reduce

Examples

Example: Word Count

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

Map Reduce & Spark

Map Reduce

Examples

Example: Word Count

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

Map Reduce & Spark

Map Reduce

Examples

Aside: Combiner

combine(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

EmitIntermediate(key, AsString(result));

Map Reduce & Spark

Map Reduce

Examples

Example: Reverse Web Link Graph

map(String key, String value):
// key: source url
// value: document contents
for each link target in value:
EmitIntermediate(target, key);

Map Reduce & Spark

Map Reduce

Examples

Example: Reverse Web Link Graph

reduce(String key, Iterator values):
// key: target url
// values: a list of source urls
Emit(values.serialize());

Map Reduce & Spark

Map Reduce

Examples

Example: Inverted index

map(String key, String value):
// key: document id
// value: document contents
for each unique word in value:
EmitIntermediate(word, key);

Map Reduce & Spark

Map Reduce

Examples

Example: Inverted index

reduce(String key, Iterator values):
// key: word
// values: list of document ids
Emit(values.serialize());

Map Reduce & Spark

Map Reduce

Examples

Example: Grep

map(String key, String value):
// key: document name
// value: document contents
for each line lineno, line in value:
if PATTERN matches line:
EmitIntermediate(

"%s:%d" % (key, lineno), line);

Map Reduce & Spark

Map Reduce

Examples

Example: Grep

reduce(String key, Iterator values):
// key: document/lineno pair
// values: line contents
Emit(values.first);

Map Reduce & Spark

Map Reduce

Examples

Example: Distributed sort

map(String key, String value):
// key: key
// value: record
EmitIntermediate(key, value);

Map Reduce & Spark

Map Reduce

Examples

Example: Distributed sort

reduce(String key, Iterator values):
// key: key
// values: list of records
for each record in records:
Emit(record);

Map Reduce & Spark

Map Reduce

Architecture

Map Reduce

1 Map Reduce
Context
Overall idea
Examples
Architecture
Challenges

Map Reduce & Spark

Map Reduce

Architecture

Architecture

Master with workers
Master pings all workers to track liveness
Master keeps track of map and reduce task state,
restarting failed ones
Map task output gets written to local disk. So, even
completed tasks on failed workers need to be restarted.

Map Reduce & Spark

Map Reduce

Architecture

Architecture

Master with workers
Master pings all workers to track liveness
Master keeps track of map and reduce task state,
restarting failed ones
Map task output gets written to local disk. So, even
completed tasks on failed workers need to be restarted.

Map Reduce & Spark

Map Reduce

Architecture

Architecture

Master with workers
Master pings all workers to track liveness
Master keeps track of map and reduce task state,
restarting failed ones
Map task output gets written to local disk. So, even
completed tasks on failed workers need to be restarted.

Map Reduce & Spark

Map Reduce

Architecture

Architecture

Master with workers
Master pings all workers to track liveness
Master keeps track of map and reduce task state,
restarting failed ones
Map task output gets written to local disk. So, even
completed tasks on failed workers need to be restarted.

Map Reduce & Spark

Map Reduce

Architecture

Architecture

Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.
User configures reduce partitioning, within a partition all
keys are processed in sorted order
Output often goes back to GFS (output is often the input to
another job)
Stragglers a real problem - some jobs are started multiple
times.

Map Reduce & Spark

Map Reduce

Architecture

Architecture

Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.
User configures reduce partitioning, within a partition all
keys are processed in sorted order
Output often goes back to GFS (output is often the input to
another job)
Stragglers a real problem - some jobs are started multiple
times.

Map Reduce & Spark

Map Reduce

Architecture

Architecture

Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.
User configures reduce partitioning, within a partition all
keys are processed in sorted order
Output often goes back to GFS (output is often the input to
another job)
Stragglers a real problem - some jobs are started multiple
times.

Map Reduce & Spark

Map Reduce

Architecture

Architecture

Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.
User configures reduce partitioning, within a partition all
keys are processed in sorted order
Output often goes back to GFS (output is often the input to
another job)
Stragglers a real problem - some jobs are started multiple
times.

Map Reduce & Spark

Map Reduce

Architecture

Stragglers

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B
/s

)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B
/s

)

500 1000

Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B

/s
)

Done

(a) Normal execution

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B
/s

)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B
/s

)

500 1000

Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B

/s
)

Done

(b) No backup tasks

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B
/s

)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B
/s

)

500 1000

Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B

/s
)

Done

(c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

original text line as the intermediate key/value pair. We
used a built-in Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair. The final sorted
output is written to a set of 2-way replicated GFS files
(i.e., 2 terabytes are written as the output of the program).

As before, the input data is split into 64MB pieces
(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the ini-
tial bytes of the key to segregate it into one of R pieces.

Our partitioning function for this benchmark has built-
in knowledge of the distribution of keys. In a general
sorting program, we would add a pre-pass MapReduce
operation that would collect a sample of the keys and
use the distribution of the sampled keys to compute split-
points for the final sorting pass.

Figure 3 (a) shows the progress of a normal execution
of the sort program. The top-left graph shows the rate
at which input is read. The rate peaks at about 13 GB/s
and dies off fairly quickly since all map tasks finish be-
fore 200 seconds have elapsed. Note that the input rate
is less than for grep. This is because the sort map tasks
spend about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.

The middle-left graph shows the rate at which data
is sent over the network from the map tasks to the re-
duce tasks. This shuffling starts as soon as the first
map task completes. The first hump in the graph is for

the first batch of approximately 1700 reduce tasks (the
entire MapReduce was assigned about 1700 machines,
and each machine executes at most one reduce task at a
time). Roughly 300 seconds into the computation, some
of these first batch of reduce tasks finish and we start
shuffling data for the remaining reduce tasks. All of the
shuffling is done about 600 seconds into the computation.
The bottom-left graph shows the rate at which sorted
data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of
the writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds. This is similar to the current best reported
result of 1057 seconds for the TeraSort benchmark [18].
A few things to note: the input rate is higher than the
shuffle rate and the output rate because of our locality
optimization – most data is read from a local disk and
bypasses our relatively bandwidth constrained network.
The shuffle rate is higher than the output rate because
the output phase writes two copies of the sorted data (we
make two replicas of the output for reliability and avail-
ability reasons). We write two replicas because that is
the mechanism for reliability and availability provided
by our underlying file system. Network bandwidth re-
quirements for writing data would be reduced if the un-
derlying file system used erasure coding [14] rather than
replication.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 145

Map Reduce & Spark

Map Reduce

Challenges

Map Reduce

1 Map Reduce
Context
Overall idea
Examples
Architecture
Challenges

Map Reduce & Spark

Map Reduce

Challenges

Challenges

Must fit into map/reduce framework.
Everything is written to disk, often to GFS, which means
triplicate. Lots of disk I/O and network I/O.
I/O exacerbated when output is the input to another job.

Map Reduce & Spark

Map Reduce

Challenges

Challenges

Must fit into map/reduce framework.
Everything is written to disk, often to GFS, which means
triplicate. Lots of disk I/O and network I/O.
I/O exacerbated when output is the input to another job.

Map Reduce & Spark

Map Reduce

Challenges

Challenges

Must fit into map/reduce framework.
Everything is written to disk, often to GFS, which means
triplicate. Lots of disk I/O and network I/O.
I/O exacerbated when output is the input to another job.

Map Reduce & Spark

Spark

Outline

1 Map Reduce

2 Spark

3 Conclusion?

Map Reduce & Spark

Spark

Spark

2 Spark
Context
Overall idea
Simple example
Scheduling
More Examples

Map Reduce & Spark

Spark

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica

University of California, Berkeley

Abstract
We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel, and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark, which we evaluate through a variety
of user applications and benchmarks.

1 Introduction
Cluster computing frameworks like MapReduce [10] and
Dryad [19] have been widely adopted for large-scale data
analytics. These systems let users write parallel compu-
tations using a set of high-level operators, without having
to worry about work distribution and fault tolerance.

Although current frameworks provide numerous ab-
stractions for accessing a cluster’s computational re-
sources, they lack abstractions for leveraging distributed
memory. This makes them inefficient for an important
class of emerging applications: those that reuse interme-
diate results across multiple computations. Data reuse is
common in many iterative machine learning and graph
algorithms, including PageRank, K-means clustering,
and logistic regression. Another compelling use case is
interactive data mining, where a user runs multiple ad-
hoc queries on the same subset of the data. Unfortu-
nately, in most current frameworks, the only way to reuse
data between computations (e.g., between two MapRe-
duce jobs) is to write it to an external stable storage sys-
tem, e.g., a distributed file system. This incurs substantial
overheads due to data replication, disk I/O, and serializa-

tion, which can dominate application execution times.
Recognizing this problem, researchers have developed

specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] is a system for
iterative graph computations that keeps intermediate data
in memory, while HaLoop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (e.g., looping a series of
MapReduce steps), and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning to optimize data placement, and ma-
nipulate them using a rich set of operators.

The main challenge in designing RDDs is defining a
programming interface that can provide fault tolerance
efficiently. Existing abstractions for in-memory storage
on clusters, such as distributed shared memory [24], key-
value stores [25], databases, and Piccolo [27], offer an
interface based on fine-grained updates to mutable state
(e.g., cells in a table). With this interface, the only ways
to provide fault tolerance are to replicate the data across
machines or to log updates across machines. Both ap-
proaches are expensive for data-intensive workloads, as
they require copying large amounts of data over the clus-
ter network, whose bandwidth is far lower than that of
RAM, and they incur substantial storage overhead.

In contrast to these systems, RDDs provide an inter-
face based on coarse-grained transformations (e.g., map,
filter and join) that apply the same operation to many
data items. This allows them to efficiently provide fault
tolerance by logging the transformations used to build a
dataset (its lineage) rather than the actual data.1 If a parti-
tion of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to recompute

1Checkpointing the data in some RDDs may be useful when a lin-
eage chain grows large, however, and we discuss how to do it in §5.4.

Map Reduce & Spark

Spark

Context

Spark

2 Spark
Context
Overall idea
Simple example
Scheduling
More Examples

Map Reduce & Spark

Spark

Context

Resilient Distributed Datasets

Existing frameworks are a poor fit for:
Iterative algorithms
Interactive data mining

Map Reduce & Spark

Spark

Context

Resilient Distributed Datasets

Existing frameworks are a poor fit for:
Iterative algorithms
Interactive data mining

Map Reduce & Spark

Spark

Context

Resilient Distributed Datasets

Both things can be sped up orders of magnitude by keeping
stuff in memory!

Map Reduce & Spark

Spark

Overall idea

Spark

2 Spark
Context
Overall idea
Simple example
Scheduling
More Examples

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

RDDs are implemented as lightweight objects inside of a
Scala shell, where each object represents a sequence of
deterministic transformations on some data.
RDDs can only be constructed in the Scala shell by
referencing some files on disk (usually HDFS), or by
operations on other RDDs.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

RDDs are implemented as lightweight objects inside of a
Scala shell, where each object represents a sequence of
deterministic transformations on some data.
RDDs can only be constructed in the Scala shell by
referencing some files on disk (usually HDFS), or by
operations on other RDDs.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Example)

val lines = sc.textFile("hdfs://path/to/log")
val errors = lines.filter(_.startsWith("ERROR"))
val timestamps = (errors

.filter(_.contains("HDFS"))

.map(_.split("\t")(3)))

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

An RDD is a read-only, partitioned collection of records.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Map)

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling

Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Map (flatMap in Spark)

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Reduce)

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling

Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Reduce (reduceByKey in Spark)

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Transformations)

RDD operations are coarse-grained and high level, like
map, sample, filter, reduceByKey, etc.
RDDs are evaluated lazily. Data is processed as late as
possible. The RDD simply records the high level operation
order, dependencies, and data partitions.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Transformations)

RDD operations are coarse-grained and high level, like
map, sample, filter, reduceByKey, etc.
RDDs are evaluated lazily. Data is processed as late as
possible. The RDD simply records the high level operation
order, dependencies, and data partitions.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Transformations)

lines

errors

filter(_.startsWith(“ERROR”))

HDFS errors

time fields

filter(_.contains(“HDFS”)))

map(_.split(‘\t’)(3))

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:

errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning

// HDFS as an array (assuming time is field

// number 3 in a tab-separated format):

errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.

Aspect RDDs Distr. Shared Mem.
Reads Coarse- or fine-grained Fine-grained
Writes Coarse-grained Fine-grained
Consistency Trivial (immutable) Up to app / runtime
Fault recovery Fine-grained and low-

overhead using lineage
Requires checkpoints
and program rollback

Straggler
mitigation

Possible using backup
tasks

Difficult

Work
placement

Automatic based on
data locality

Up to app (runtimes
aim for transparency)

Behavior if not
enough RAM

Similar to existing data
flow systems

Poor performance
(swapping?)

Table 1: Comparison of RDDs with distributed shared memory.

2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

Transformations

map(f : T⇒ U) : RDD[T]⇒ RDD[U]
filter(f : T⇒ Bool) : RDD[T]⇒ RDD[T]

flatMap(f : T⇒ Seq[U]) : RDD[T]⇒ RDD[U]
sample(fraction : Float) : RDD[T]⇒ RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]⇒ RDD[(K, Seq[V])]
reduceByKey(f : (V,V)⇒ V) : RDD[(K, V)]⇒ RDD[(K, V)]

union() : (RDD[T],RDD[T])⇒ RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])⇒ RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])⇒ RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])⇒ RDD[(T, U)]

mapValues(f : V⇒W) : RDD[(K, V)]⇒ RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

Actions

count() : RDD[T]⇒ Long
collect() : RDD[T]⇒ Seq[T]

reduce(f : (T,T)⇒ T) : RDD[T]⇒ T
lookup(k : K) : RDD[(K, V)]⇒ Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)

.map(parsePoint).persist()

var w = // random initial vector

for (i <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)

w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20× speedup, as we show in Section 6.1.

3.2.2 PageRank

A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to α/N + (1− α)∑ci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()

var ranks = // RDD of (URL, rank) pairs

for (i <- 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs

// with the contributions sent by each page

val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>

links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks

ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)

}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Tuning)

A user can indicate which RDDs may get reused and
should be persisted (usually in-memory, but can be spilled
to disk via priority) (persist or cache).
A user can also configure the partitioning of the data, and
the algorithm through which nodes are chosen by key
(helps join efficiency, etc).

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Tuning)

A user can indicate which RDDs may get reused and
should be persisted (usually in-memory, but can be spilled
to disk via priority) (persist or cache).
A user can also configure the partitioning of the data, and
the algorithm through which nodes are chosen by key
(helps join efficiency, etc).

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Actions)

Once you have constructed an RDD with approriate
transformations, the user can perform an action.
Actions materialize an RDD, fire up the job scheduler, and
cause work to be performed.
Actions include count, collect, reduce, save.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Actions)

Once you have constructed an RDD with approriate
transformations, the user can perform an action.
Actions materialize an RDD, fire up the job scheduler, and
cause work to be performed.
Actions include count, collect, reduce, save.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea (Actions)

Once you have constructed an RDD with approriate
transformations, the user can perform an action.
Actions materialize an RDD, fire up the job scheduler, and
cause work to be performed.
Actions include count, collect, reduce, save.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

Transformations

map(f : T⇒ U) : RDD[T]⇒ RDD[U]
filter(f : T⇒ Bool) : RDD[T]⇒ RDD[T]

flatMap(f : T⇒ Seq[U]) : RDD[T]⇒ RDD[U]
sample(fraction : Float) : RDD[T]⇒ RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]⇒ RDD[(K, Seq[V])]
reduceByKey(f : (V,V)⇒ V) : RDD[(K, V)]⇒ RDD[(K, V)]

union() : (RDD[T],RDD[T])⇒ RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])⇒ RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])⇒ RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])⇒ RDD[(T, U)]

mapValues(f : V⇒W) : RDD[(K, V)]⇒ RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

Actions

count() : RDD[T]⇒ Long
collect() : RDD[T]⇒ Seq[T]

reduce(f : (T,T)⇒ T) : RDD[T]⇒ T
lookup(k : K) : RDD[(K, V)]⇒ Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)

.map(parsePoint).persist()

var w = // random initial vector

for (i <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)

w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20× speedup, as we show in Section 6.1.

3.2.2 PageRank

A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to α/N + (1− α)∑ci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()

var ranks = // RDD of (URL, rank) pairs

for (i <- 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs

// with the contributions sent by each page

val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>

links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks

ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)

}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

RDDs are immutable and deterministic.
Easy to launch backup workers for stragglers (clear win
from Map Reduce)
Easy to relaunch computations from failed nodes.
Computations are computed lazily, which allows for rich
optimizations for locality/partitioning by a job scheduler and
query planner.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

RDDs are immutable and deterministic.
Easy to launch backup workers for stragglers (clear win
from Map Reduce)
Easy to relaunch computations from failed nodes.
Computations are computed lazily, which allows for rich
optimizations for locality/partitioning by a job scheduler and
query planner.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

RDDs are immutable and deterministic.
Easy to launch backup workers for stragglers (clear win
from Map Reduce)
Easy to relaunch computations from failed nodes.
Computations are computed lazily, which allows for rich
optimizations for locality/partitioning by a job scheduler and
query planner.

Map Reduce & Spark

Spark

Overall idea

Spark: Overall idea

RDDs are immutable and deterministic.
Easy to launch backup workers for stragglers (clear win
from Map Reduce)
Easy to relaunch computations from failed nodes.
Computations are computed lazily, which allows for rich
optimizations for locality/partitioning by a job scheduler and
query planner.

Map Reduce & Spark

Spark

Simple example

Spark

2 Spark
Context
Overall idea
Simple example
Scheduling
More Examples

Map Reduce & Spark

Spark

Simple example

Example: Log querying

val lines = sc.textFile("hdfs://path/to/log")
val errors = lines.filter(_.startsWith("ERROR"))
errors.cache()

Map Reduce & Spark

Spark

Simple example

Example: Log querying

errors.count()

Map Reduce & Spark

Spark

Simple example

Example: Log querying

errors.filter(_.contains("MySQL")).count()

Map Reduce & Spark

Spark

Simple example

Example: Log querying

(errors.filter(_.contains("HDFS"))
.map(_.split("\t")(3))
.collect())

Map Reduce & Spark

Spark

Simple example

Example: Log querying

lines

errors

filter(_.startsWith(“ERROR”))

HDFS errors

time fields

filter(_.contains(“HDFS”)))

map(_.split(‘\t’)(3))

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:

errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning

// HDFS as an array (assuming time is field

// number 3 in a tab-separated format):

errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.

Aspect RDDs Distr. Shared Mem.
Reads Coarse- or fine-grained Fine-grained
Writes Coarse-grained Fine-grained
Consistency Trivial (immutable) Up to app / runtime
Fault recovery Fine-grained and low-

overhead using lineage
Requires checkpoints
and program rollback

Straggler
mitigation

Possible using backup
tasks

Difficult

Work
placement

Automatic based on
data locality

Up to app (runtimes
aim for transparency)

Behavior if not
enough RAM

Similar to existing data
flow systems

Poor performance
(swapping?)

Table 1: Comparison of RDDs with distributed shared memory.

2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.

Map Reduce & Spark

Spark

Scheduling

Spark

2 Spark
Context
Overall idea
Simple example
Scheduling
More Examples

Map Reduce & Spark

Spark

Scheduling

RDD Representation

of iterations. Thus, in a job with many iterations, it may
be necessary to reliably replicate some of the versions
of ranks to reduce fault recovery times [20]. The user
can call persist with a RELIABLE flag to do this. However,
note that the links dataset does not need to be replicated,
because partitions of it can be rebuilt efficiently by rerun-
ning a map on blocks of the input file. This dataset will
typically be much larger than ranks, because each docu-
ment has many links but only one number as its rank, so
recovering it using lineage saves time over systems that
checkpoint a program’s entire in-memory state.

Finally, we can optimize communication in PageRank
by controlling the partitioning of the RDDs. If we spec-
ify a partitioning for links (e.g., hash-partition the link
lists by URL across nodes), we can partition ranks in
the same way and ensure that the join operation between
links and ranks requires no communication (as each
URL’s rank will be on the same machine as its link list).
We can also write a custom Partitioner class to group
pages that link to each other together (e.g., partition the
URLs by domain name). Both optimizations can be ex-
pressed by calling partitionBy when we define links:

links = spark.textFile(...).map(...)

.partitionBy(myPartFunc).persist()

After this initial call, the join operation between links
and ranks will automatically aggregate the contributions
for each URL to the machine that its link lists is on, cal-
culate its new rank there, and join it with its links. This
type of consistent partitioning across iterations is one of
the main optimizations in specialized frameworks like
Pregel. RDDs let the user express this goal directly.

4 Representing RDDs
One of the challenges in providing RDDs as an abstrac-
tion is choosing a representation for them that can track
lineage across a wide range of transformations. Ideally,
a system implementing RDDs should provide as rich
a set of transformation operators as possible (e.g., the
ones in Table 2), and let users compose them in arbitrary
ways. We propose a simple graph-based representation
for RDDs that facilitates these goals. We have used this
representation in Spark to support a wide range of trans-
formations without adding special logic to the scheduler
for each one, which greatly simplified the system design.

In a nutshell, we propose representing each RDD
through a common interface that exposes five pieces of
information: a set of partitions, which are atomic pieces
of the dataset; a set of dependencies on parent RDDs;
a function for computing the dataset based on its par-
ents; and metadata about its partitioning scheme and data
placement. For example, an RDD representing an HDFS
file has a partition for each block of the file and knows
which machines each block is on. Meanwhile, the result

Operation Meaning
partitions() Return a list of Partition objects

preferredLocations(p) List nodes where partition p can be
accessed faster due to data locality

dependencies() Return a list of dependencies
iterator(p, parentIters) Compute the elements of partition p

given iterators for its parent partitions
partitioner() Return metadata specifying whether

the RDD is hash/range partitioned

Table 3: Interface used to represent RDDs in Spark.

of a map on this RDD has the same partitions, but applies
the map function to the parent’s data when computing its
elements. We summarize this interface in Table 3.

The most interesting question in designing this inter-
face is how to represent dependencies between RDDs.
We found it both sufficient and useful to classify depen-
dencies into two types: narrow dependencies, where each
partition of the parent RDD is used by at most one parti-
tion of the child RDD, wide dependencies, where multi-
ple child partitions may depend on it. For example, map
leads to a narrow dependency, while join leads to to wide
dependencies (unless the parents are hash-partitioned).
Figure 4 shows other examples.

This distinction is useful for two reasons. First, narrow
dependencies allow for pipelined execution on one clus-
ter node, which can compute all the parent partitions. For
example, one can apply a map followed by a filter on an
element-by-element basis. In contrast, wide dependen-
cies require data from all parent partitions to be available
and to be shuffled across the nodes using a MapReduce-
like operation. Second, recovery after a node failure is
more efficient with a narrow dependency, as only the lost
parent partitions need to be recomputed, and they can be
recomputed in parallel on different nodes. In contrast, in
a lineage graph with wide dependencies, a single failed
node might cause the loss of some partition from all the
ancestors of an RDD, requiring a complete re-execution.

This common interface for RDDs made it possible to
implement most transformations in Spark in less than 20
lines of code. Indeed, even new Spark users have imple-
mented new transformations (e.g., sampling and various
types of joins) without knowing the details of the sched-
uler. We sketch some RDD implementations below.

HDFS files: The input RDDs in our samples have been
files in HDFS. For these RDDs, partitions returns one
partition for each block of the file (with the block’s offset
stored in each Partition object), preferredLocations gives
the nodes the block is on, and iterator reads the block.

map: Calling map on any RDD returns a MappedRDD
object. This object has the same partitions and preferred
locations as its parent, but applies the function passed to

Map Reduce & Spark

Spark

Scheduling

Narrow vs Wide Dependencies

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling

Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Map Reduce & Spark

Spark

Scheduling

Job Scheduling

union

groupByKey

join with inputs not
co-partitioned

join with inputs
co-partitioned

map, filter

Narrow Dependencies: Wide Dependencies:

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling

Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Map Reduce & Spark

Spark

More Examples

Spark

2 Spark
Context
Overall idea
Simple example
Scheduling
More Examples

Map Reduce & Spark

Spark

More Examples

Example: Word Count

val m = documents.flatMap(
_._2.split("\\s+")

.map(word => (word, "1")))
val r = m.reduceByKey(

(a, b) => (a.toInt + b.toInt).toString)

// do we need a combine step?

Map Reduce & Spark

Spark

More Examples

Example: Reverse Index

val m = documents.flatMap(
doc =>

(doc._2.split("\\s+")
.distinct
.map(word => (word, doc._1))))

val r = m.reduceByKey(
(a, b) => a + "\n" + b)

Map Reduce & Spark

Spark

More Examples

Example: Grep

def search(keyword: String) = {
(documents
.filter(_._2.contains(keyword))
.map(_._1)
.reduce((a, b) => (a + "\n" + b)))

}

Map Reduce & Spark

Spark

More Examples

Example: Page Rank

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = (contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum))
}

Map Reduce & Spark

Spark

More Examples

Example: Page Rank

Transformations

map(f : T⇒ U) : RDD[T]⇒ RDD[U]
filter(f : T⇒ Bool) : RDD[T]⇒ RDD[T]

flatMap(f : T⇒ Seq[U]) : RDD[T]⇒ RDD[U]
sample(fraction : Float) : RDD[T]⇒ RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]⇒ RDD[(K, Seq[V])]
reduceByKey(f : (V,V)⇒ V) : RDD[(K, V)]⇒ RDD[(K, V)]

union() : (RDD[T],RDD[T])⇒ RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])⇒ RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])⇒ RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])⇒ RDD[(T, U)]

mapValues(f : V⇒W) : RDD[(K, V)]⇒ RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

Actions

count() : RDD[T]⇒ Long
collect() : RDD[T]⇒ Seq[T]

reduce(f : (T,T)⇒ T) : RDD[T]⇒ T
lookup(k : K) : RDD[(K, V)]⇒ Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)

.map(parsePoint).persist()

var w = // random initial vector

for (i <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)

w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20× speedup, as we show in Section 6.1.

3.2.2 PageRank

A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to α/N + (1− α)∑ci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()

var ranks = // RDD of (URL, rank) pairs

for (i <- 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs

// with the contributions sent by each page

val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>

links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks

ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)

}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Map Reduce & Spark

Conclusion?

Outline

1 Map Reduce

2 Spark

3 Conclusion?

Map Reduce & Spark

Conclusion?

Conclusion?

3 Conclusion?

Map Reduce & Spark

Conclusion?

Conclusion?

Can anything really be dead?
Is Map Reduce dead?
Is Spark the last word?
Questions?

Map Reduce & Spark

Conclusion?

Conclusion?

Can anything really be dead?
Is Map Reduce dead?
Is Spark the last word?
Questions?

Map Reduce & Spark

Conclusion?

Conclusion?

Can anything really be dead?
Is Map Reduce dead?
Is Spark the last word?
Questions?

Map Reduce & Spark

Conclusion?

Conclusion?

Can anything really be dead?
Is Map Reduce dead?
Is Spark the last word?
Questions?

Map Reduce & Spark

Meetup Wrap-up

Shameless plug

Map Reduce & Spark

Meetup Wrap-up

Shameless plug

Space Monkey!

Large scale storage
Distributed system design and implementation
Security and cryptography engineering
Erasure codes
Monitoring and sooo much data

Map Reduce & Spark

Meetup Wrap-up

Shameless plug

Space Monkey!

Come work with us!

	Map Reduce
	Spark
	Conclusion?

