Map Reduce & Spark

Utah Distributed Systems Meetup and
Reading Group - Map Reduce and Spark

JT Olds

Space Monkey
Vivint R&D

January 19 2016

Map Reduce & Spark

Outline

Map Reduce

Spark

Conclusion?

Map Reduce & Spark

LMap Reduce

Outline

Map Reduce

Map Reduce & Spark
LMap Reduce

Map Reduce

Map Reduce
m Context
m Overall idea
m Examples
m Architecture
m Challenges

Map Reduce & Spark

LMap Reduce

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
‘modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
‘gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commaodity machines and is highly scalable:

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
4 reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obseure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of ization, fault-tolerance, data distrib
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-

Map Reduce & Spark

LMap Reduce

L Context

Map Reduce

Map Reduce
m Context

Map Reduce & Spark

LMap Reduce

L Context

Google Map Reduce context

m Lots of conceptually simple tasks

Map Reduce & Spark

LMap Reduce

L Context

Google Map Reduce context

m Lots of conceptually simple tasks
m On an internet’s worth of data

Map Reduce & Spark

LMap Reduce

L Context

Google Map Reduce context

m Lots of conceptually simple tasks
m On an internet’s worth of data
m Spread across thousands of commodity servers

Map Reduce & Spark

LMap Reduce

L Context

Google Map Reduce context

m Lots of conceptually simple tasks

m On an internet’s worth of data

m Spread across thousands of commodity servers
m That are constantly failing

Map Reduce & Spark

LMap Reduce

L Context

Google Map Reduce context: abstraction?

m Parallelize the computation

Map Reduce & Spark

LMap Reduce

L Context

Google Map Reduce context: abstraction?

m Parallelize the computation
m Distribute the data

Map Reduce & Spark

LMap Reduce

L Context

Google Map Reduce context: abstraction?

m Parallelize the computation
m Distribute the data
m Handle failures

Map Reduce & Spark

LMap Reduce

L Context

Google Map Reduce context: abstraction?

m Parallelize the computation
m Distribute the data

m Handle failures

m With simple code

Map Reduce & Spark

LMap Reduce

L overall idea

Map Reduce

Map Reduce

m Overall idea

Map Reduce & Spark

LMap Reduce

L overall idea

Google Map Reduce: Map

map (n1,d1) — [(k~|, V1) R (kg, V2) R]

Map Reduce & Spark

LMap Reduce

L overall idea

Google Map Reduce: Map

map (ny,dy) — [(ki,v1), (ko, v2),...]

map (ng, dg) — [(k3, V3) s (k1, V4) s]

Map Reduce & Spark

LMap Reduce

L overall idea

Google Map Reduce: Reduce

reduce (k1, [V1, Vg,]) —

Map Reduce & Spark

LMap Reduce

L overall idea

Google Map Reduce: Reduce

reduce (ky, [y, V4, ...]) = 11

reduce (ko, [V2,...]) = 2

Map Reduce & Spark
LMap Reduce

L Examples

Map Reduce

Map Reduce

m Examples

Map Reduce & Spark
LMap Reduce

L Examples

Example: Word Count

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, "1");

Map Reduce & Spark

LMap Reduce

L Examples

Example: Word Count

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));

Map Reduce & Spark

LMap Reduce

L Examples

Aside: Combiner

combine (String key, Iterator wvalues):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
EmitIntermediate (key, AsString(result));

Map Reduce & Spark
LMap Reduce

L Examples

Example: Reverse Web Link Graph

map (String key, String value):
// key: source url
// value: document contents
for each link target in value:
EmitIntermediate (target, key);

Map Reduce & Spark
LMap Reduce

L Examples

Example: Reverse Web Link Graph

reduce (String key, Iterator values):
// key: target url
// values: a list of source urls
Emit (values.serialize());

Map Reduce & Spark
LMap Reduce

L Examples

Example: Inverted index

map (String key, String value):
// key: document id
// value: document contents
for each unique word in value:
EmitIntermediate (word, key);

Map Reduce & Spark
LMap Reduce

L Examples

Example: Inverted index

reduce (String key, Iterator values):
// key: word
// values: list of document ids
Emit (values.serialize());

Map Reduce & Spark
LMap Reduce

L Examples

Example: Grep

map (String key, String value):
// key: document name
// value: document contents
for each line lineno, line in value:
if PATTERN matches line:
EmitIntermediate (
"$s:%d" % (key, lineno), line);

Map Reduce & Spark
LMap Reduce

L Examples

Example: Grep

reduce (String key, Iterator values):
// key: document/lineno pair
// values: line contents
Emit (values.first);

Map Reduce & Spark
LMap Reduce

L Examples

Example: Distributed sort

map (String key, String value):
// key: key
// value: record
EmitIntermediate (key, value);

Map Reduce & Spark
LMap Reduce

L Examples

Example: Distributed sort

reduce (String key, Iterator values):
// key: key
// values: list of records
for each record in records:
Emit (record);

Map Reduce & Spark

LMap Reduce

I—Architecture

Map Reduce

Map Reduce

m Architecture

Map Reduce & Spark

LMap Reduce

I—Architecture

Architecture

m Master with workers

Map Reduce & Spark

LMap Reduce

I—Architecture

Architecture

m Master with workers
m Master pings all workers to track liveness

Map Reduce & Spark

LMap Reduce

I—Architecture

Architecture

m Master with workers
m Master pings all workers to track liveness

m Master keeps track of map and reduce task state,
restarting failed ones

Map Reduce & Spark

LMap Reduce

I—Architecture

Architecture

m Master with workers
m Master pings all workers to track liveness

m Master keeps track of map and reduce task state,
restarting failed ones

m Map task output gets written to local disk. So, even
completed tasks on failed workers need to be restarted.

Map Reduce & Spark

LMap Reduce

I—Architecture

Architecture

m Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.

Map Reduce & Spark

L Map Reduce
I—Architecture

Architecture

m Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.

m User configures reduce partitioning, within a partition all
keys are processed in sorted order

Map Reduce & Spark

L Map Reduce
I—Architecture

Architecture

m Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.

m User configures reduce partitioning, within a partition all
keys are processed in sorted order

m Output often goes back to GFS (output is often the input to
another job)

Map Reduce & Spark

LMap Reduce

I—Architecture

Architecture

m Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.

m User configures reduce partitioning, within a partition all
keys are processed in sorted order

m Output often goes back to GFS (output is often the input to
another job)

m Stragglers a real problem - some jobs are started multiple
times.

Map Reduce & Spark
LMap Reduce

I—Architecture

Stragglers

20000 4 Done 20000 e 20000 4 Done
15000 o 15000 -] 15000 4
10000 4 10000 10000 4
50004 5000 5000 -
0 T T 0 . . 0 {VL T T
500 1000 500 1000 500 1000
20000 5 20000 4 20000 4
15000 | 15000 4 15000 -
10000 4 10000 10000 4
5000 - 5000 - A 5000 A
/’\ A) A AN
0 T T T T 0 VT T
500 1000 500 1000 500 1000
200004 20000 - 20000
15000 4 15000 1 15000 o
10000 | 100004 10000 -
50004 P 3000 P 5000
0 MM
0 T T I T 0 T T
500 1000 300 1000 500 1000
Seconds Seconds Seconds

(a) Normal execution (b) No backup tasks (¢) 200 tasks killed

Map Reduce & Spark
LMap Reduce

L Challenges

Map Reduce

Map Reduce

m Challenges

Map Reduce & Spark
LMap Reduce

L Challenges

Challenges

m Must fit into map/reduce framework.

Map Reduce & Spark
LMap Reduce

L Challenges

Challenges

m Must fit into map/reduce framework.

m Everything is written to disk, often to GFS, which means
triplicate. Lots of disk 1/0O and network 1/O.

Map Reduce & Spark
LMap Reduce

L Challenges

Challenges

m Must fit into map/reduce framework.

m Everything is written to disk, often to GFS, which means
triplicate. Lots of disk 1/0O and network 1/O.

m |/O exacerbated when output is the input to another job.

Map Reduce & Spark
LSpark

Outline

Spark

Map Reduce & Spark
LSpark

Spark

Spark
m Context
m Overall idea
m Simple example
m Scheduling
m More Examples

Map Reduce & Spark
LSpark

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for

In-M 'y Cluster Computi

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, Ton Stoica
University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel, and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark, which we evaluate through a variety
of user applications and benchmarks

1 Introduction

Cluster computing frameworks like MapReduce [10] and
Dryad [19] have been widely adopted for large-scale data
analytics. These systems let users write parallel compu-
tations using a set of high-level operators, without having

tion, which can dominate application execution times.

Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] is a system for
iterative graph computations that keeps intermediate data
in memory, while HaLoop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (¢.g., looping a series of
MapReduce steps). and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning o optimize data placement, and ma-
nipulate them using a rich set of operators.

‘The main challenge in designing RDDs is defining a
programming interface that can provide fault tolerance
efficiently. Existing abstractions for in-memory storage
on clusters, such as distributed shared memory [24], key-
value stores [25], databases, and Piccolo [27], offer an
interface based on fine-grained updates to mutable state
able) With this interface the onlv wavs

(0o cellci

Map Reduce & Spark
LSpark

L Context

Spark

Spark
m Context

Map Reduce & Spark
LSpark

L Context

Resilient Distributed Datasets

Existing frameworks are a poor fit for:
m lterative algorithms

Map Reduce & Spark
LSpark

L Context

Resilient Distributed Datasets

Existing frameworks are a poor fit for:
m lterative algorithms
m Interactive data mining

Map Reduce & Spark
LSpark

L Context

Resilient Distributed Datasets

Both things can be sped up orders of magnitude by keeping
stuff in memory!

Map Reduce & Spark
LSpark

L overall idea

Spark

Spark

m Overall idea

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea

m RDDs are implemented as lightweight objects inside of a
Scala shell, where each object represents a sequence of
deterministic transformations on some data.

Map Reduce & Spark

LSpark
L overall idea

Spark: Overall idea

m RDDs are implemented as lightweight objects inside of a
Scala shell, where each object represents a sequence of
deterministic transformations on some data.

m RDDs can only be constructed in the Scala shell by
referencing some files on disk (usually HDFS), or by
operations on other RDDs.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea (Example)

val lines = sc.textFile("hdfs://path/to/log")
val errors = lines.filter(_.startsWith ("ERROR"))
val timestamps = (errors

.filter (_.contains ("HDFS"))

.map (_.split ("\t") (3)))

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea

m An RDD is a read-only, partitioned collection of records.

Map Reduce & Spark

L Spark

L overall idea

Spark: Overall idea (Map)

(1]

Map (f1latMap in Spark)

Map Reduce & Spark

L Spark

L overall idea

Spark: Overall idea (Reduce)

Reduce (reduceByKey in Spark)

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea (Transformations)

m RDD operations are coarse-grained and high level, like
map, sample, filter, reduceByKey, etc.

Map Reduce & Spark

LSpark
L overall idea

Spark: Overall idea (Transformations)

m RDD operations are coarse-grained and high level, like
map, sample, filter, reduceByKey, etc.

m RDDs are evaluated lazily. Data is processed as late as
possible. The RDD simply records the high level operation
order, dependencies, and data partitions.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea (Transformations)

[lines]
l filter(_.startsWith(‘ERROR”))
[errors

l filter(_.contains("HDFS”)))
[HDFS errors

4 map(_split(t)(3))
[time fields

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea

map(f: T=U)

filter(f : T = Bool)
AatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

RDD[T] = RDD[U]

RDD[T] = RDDIT]

RDD[T] = RDD[U]

RDD[T] = RDDI[T] (Deterministic sampling)
RDD[(K. V)] = RDD[(K, Seq[V])]

reduceByKey(f : (V,V) = V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union() (RDDI[T],RDDI[T]) = RDDIT]
Join() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V]. Seq[W]))]
crossProduct() (RDD[T],RDD[U]) = RDDI(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() : RDD[T] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f : (T, T) = T) RDDI[T] = T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea (Tuning)

m A user can indicate which RDDs may get reused and
should be persisted (usually in-memory, but can be spilled
to disk via priority) (persist Or cache).

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea (Tuning)

m A user can indicate which RDDs may get reused and
should be persisted (usually in-memory, but can be spilled
to disk via priority) (persist Or cache).

m A user can also configure the partitioning of the data, and
the algorithm through which nodes are chosen by key
(helps join efficiency, etc).

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea (Actions)

m Once you have constructed an RDD with approriate
transformations, the user can perform an action.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea (Actions)

m Once you have constructed an RDD with approriate
transformations, the user can perform an action.

m Actions materialize an RDD, fire up the job scheduler, and
cause work to be performed.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea (Actions)

m Once you have constructed an RDD with approriate
transformations, the user can perform an action.

m Actions materialize an RDD, fire up the job scheduler, and
cause work to be performed.

m Actions include count, collect, reduce, save.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea

map(f: T=U)

filter(f : T = Bool)
AatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

RDD[T] = RDD[U]

RDD[T] = RDDIT]

RDD[T] = RDD[U]

RDD[T] = RDDI[T] (Deterministic sampling)
RDD[(K. V)] = RDD[(K, Seq[V])]

reduceByKey(f : (V,V) = V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union() (RDDI[T],RDDI[T]) = RDDIT]
Join() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V]. Seq[W]))]
crossProduct() (RDD[T],RDD[U]) = RDDI(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() : RDD[T] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f : (T, T) = T) RDDI[T] = T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea

m RDDs are immutable and deterministic.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea

m RDDs are immutable and deterministic.

m Easy to launch backup workers for stragglers (clear win
from Map Reduce)

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea

m RDDs are immutable and deterministic.

m Easy to launch backup workers for stragglers (clear win
from Map Reduce)

m Easy to relaunch computations from failed nodes.

Map Reduce & Spark
LSpark

L overall idea

Spark: Overall idea

m RDDs are immutable and deterministic.

m Easy to launch backup workers for stragglers (clear win
from Map Reduce)

m Easy to relaunch computations from failed nodes.

m Computations are computed lazily, which allows for rich
optimizations for locality/partitioning by a job scheduler and
query planner.

Map Reduce & Spark
LSpark

L Simple example

Spark

Spark

m Simple example

Map Reduce & Spark
LSpark

L Simple example

Example: Log querying

val lines = sc.textFile("hdfs://path/to/log")
val errors = lines.filter(_.startsWith ("ERROR"))
errors.cache ()

Map Reduce & Spark
LSpark

L Simple example

Example: Log querying

errors.count ()

Map Reduce & Spark
LSpark

L Simple example

Example: Log querying

errors.filter (_.contains ("MySQL")) .count ()

Map Reduce & Spark
LSpark

L Simple example

Example: Log querying

(errors.filter (_.contains ("HDFS"))
.map (_.split ("\t") (3))
.collect ())

Map Reduce & Spark
LSpark

L Simple example

Example: Log querying

[lines]
l filter(_.startsWith(‘ERROR”))
[errors

l filter(_.contains("HDFS”)))
[HDFS errors

4 map(_split(t)(3))
[time fields

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

Map Reduce & Spark
LSpark

I—Scheduling

Spark

B Spark

m Scheduling

Map Reduce & Spark
LSpark

[Scheduling

RDD Representation

Operation Meaning
partitions() Return a list of Partition objects
preferredLocations(p) | List nodes where partition p can be

accessed faster due to data locality
dependencies() Return a list of dependencies

iterator(p, parentlters)

Compute the elements of partition p
given iterators for its parent partitions

partitioner()

Return metadata specifying whether
the RDD is hash/range partitioned

Table 3: Interface used to represent RDDs in Spark.

Map Reduce & Spark
LSpark

I—Scheduling

Narrow vs Wide Dependencies

Narrow Dependencies: Wide Dependencies:

(I1)
(11)

map, filter groupByKey

join with inputs
co-partitioned

CTICTY

join with inputs not
co-partitioned

union

Map Reduce & Spark
LSpark

I—Scheduling

Job Scheduling

A

e e e e - - —

N e e e -

Map Reduce & Spark
LSpark

L More Examples

Spark

Spark

m More Examples

Map Reduce & Spark
LSpark

L More Examples

Example: Word Count

val m = documents.flatMap (
_._2.split ("\\s+")
.map (word => (word, "1")))
val r = m.reduceByKey (
(a, b) => (a.toInt + b.tolInt).toString)

// do we need a combine step?

Map Reduce & Spark
LSpark

L More Examples

Example: Reverse Index

val m = documents.flatMap (
doc =>
(doc._2.split ("\\s+")
.distinct
.map (word => (word, doc._1))))
val r = m.reduceByKey (
(a, b) => a + "\n" + b)

Map Reduce & Spark
LSpark

L More Examples

Example: Grep

def search (keyword: String) = {
(documents
.filter(_._2.contains (keyword))
.map(_._1)

.reduce((a, b) => (a + "\n" + b)))

Map Reduce & Spark
LSpark

L More Examples

Example: Page Rank

val links = spark.textFile(...).map(...).persist ()
var ranks // RDD of (URL, rank) pairs
for (i <= 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs

// with the contributions sent by each page

val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>
links.map (dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks

ranks = (contribs.reduceByKey ((x,y) => x+y)
.mapValues (sum => a/N + (l-a)+*sum))

Map Reduce & Spark
LSpark

L More Examples

Example: Page Rank

input file]m—ap>[links | [ranks, |
join
contribs,
reduce + map

ranks,

contribs,

ranks,

contribs,

Map Reduce & Spark

LConclusion?

Outline

Conclusion?

Map Reduce & Spark

LConclusion?

Conclusion?

Conclusion?

Map Reduce & Spark
LConclusion?

Conclusion?

m Can anything really be dead?

Map Reduce & Spark
LConclusion?

Conclusion?

m Can anything really be dead?
m Is Map Reduce dead?

Map Reduce & Spark
LConclusion?

Conclusion?

m Can anything really be dead?
m Is Map Reduce dead?
m Is Spark the last word?

Map Reduce & Spark
LConclusion?

Conclusion?

m Can anything really be dead?
m Is Map Reduce dead?

m Is Spark the last word?

m Questions?

Map Reduce & Spark

LMeetup Wrap-up

L Shameless plug

Space

MONKEY

Map Reduce & Spark
LMeetup Wrap-up

L Shameless plug

Space Monkey!

m Large scale storage

m Distributed system design and implementation
m Security and cryptography engineering

m Erasure codes

m Monitoring and sooo much data

Map Reduce & Spark
LMeetup Wrap-up

L Shameless plug

Space Monkey!

Come work with us!

	Map Reduce
	Spark
	Conclusion?

