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Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
‘modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
‘gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commaodity machines and is highly scalable:

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
4 reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obseure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of ization, fault-tolerance, data distrib
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
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Google Map Reduce context

m Lots of conceptually simple tasks

m On an internet’s worth of data

m Spread across thousands of commodity servers
m That are constantly failing
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Google Map Reduce context: abstraction?

m Parallelize the computation
m Distribute the data

m Handle failures

m With simple code
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Google Map Reduce: Map

map (ny,dy) — [(ki,v1), (ko, v2),...]

map (ng, dg) — [(k3, V3) s (k1, V4) s ]
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Google Map Reduce: Reduce

reduce (ky, [y, V4, ...]) = 11

reduce (ko, [V2,...]) = 2
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Example: Word Count

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, "1");
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Example: Word Count

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));
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Aside: Combiner

combine (String key, Iterator wvalues):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
EmitIntermediate (key, AsString(result));
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Example: Reverse Web Link Graph

map (String key, String value):
// key: source url
// value: document contents
for each link target in value:
EmitIntermediate (target, key);
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Example: Reverse Web Link Graph

reduce (String key, Iterator values):
// key: target url
// values: a list of source urls
Emit (values.serialize());
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Example: Inverted index

map (String key, String value):
// key: document id
// value: document contents
for each unique word in value:
EmitIntermediate (word, key);
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Example: Inverted index

reduce (String key, Iterator values):
// key: word
// values: list of document ids
Emit (values.serialize());



Map Reduce & Spark
LMap Reduce

L Examples

Example: Grep

map (String key, String value):
// key: document name
// value: document contents
for each line lineno, line in value:
if PATTERN matches line:
EmitIntermediate (
"$s:%d" % (key, lineno), line);
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Example: Grep

reduce (String key, Iterator values):
// key: document/lineno pair
// values: line contents
Emit (values.first);
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Example: Distributed sort

map (String key, String value):
// key: key
// value: record
EmitIntermediate (key, value);
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Example: Distributed sort

reduce (String key, Iterator values):
// key: key
// values: list of records
for each record in records:
Emit (record);
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Architecture

m Master with workers
m Master pings all workers to track liveness

m Master keeps track of map and reduce task state,
restarting failed ones

m Map task output gets written to local disk. So, even
completed tasks on failed workers need to be restarted.
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Architecture

m Input comes from GFS (triplicate), master tries to schedule
map worker on or near server with input replicate.

m User configures reduce partitioning, within a partition all
keys are processed in sorted order

m Output often goes back to GFS (output is often the input to
another job)

m Stragglers a real problem - some jobs are started multiple
times.
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Stragglers
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L Challenges

Challenges

m Must fit into map/reduce framework.

m Everything is written to disk, often to GFS, which means
triplicate. Lots of disk 1/0O and network 1/O.

m |/O exacerbated when output is the input to another job.
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Resilient Distributed Datasets: A Fault-Tolerant Abstraction for

In-M 'y Cluster Computi

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, Ton Stoica
University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel, and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark, which we evaluate through a variety
of user applications and benchmarks

1 Introduction

Cluster computing frameworks like MapReduce [10] and
Dryad [19] have been widely adopted for large-scale data
analytics. These systems let users write parallel compu-
tations using a set of high-level operators, without having

tion, which can dominate application execution times.

Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] is a system for
iterative graph computations that keeps intermediate data
in memory, while HaLoop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (¢.g., looping a series of
MapReduce steps). and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning o optimize data placement, and ma-
nipulate them using a rich set of operators.

‘The main challenge in designing RDDs is defining a
programming interface that can provide fault tolerance
efficiently. Existing abstractions for in-memory storage
on clusters, such as distributed shared memory [24], key-
value stores [25], databases, and Piccolo [27], offer an
interface based on fine-grained updates to mutable state
able) With this interface the onlv wavs

(0o cellci
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Resilient Distributed Datasets

Existing frameworks are a poor fit for:
m lterative algorithms
m Interactive data mining
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Resilient Distributed Datasets

Both things can be sped up orders of magnitude by keeping
stuff in memory!
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Spark: Overall idea

m RDDs are implemented as lightweight objects inside of a
Scala shell, where each object represents a sequence of
deterministic transformations on some data.

m RDDs can only be constructed in the Scala shell by
referencing some files on disk (usually HDFS), or by
operations on other RDDs.
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Spark: Overall idea (Example)

val lines = sc.textFile("hdfs://path/to/log")
val errors = lines.filter(_.startsWith ("ERROR"))
val timestamps = (errors

.filter (_.contains ("HDFS"))

.map (_.split ("\t") (3)))
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m An RDD is a read-only, partitioned collection of records.
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(1]

Map (f1latMap in Spark)
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Spark: Overall idea (Transformations)

m RDD operations are coarse-grained and high level, like
map, sample, filter, reduceByKey, etc.

m RDDs are evaluated lazily. Data is processed as late as
possible. The RDD simply records the high level operation
order, dependencies, and data partitions.
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[ lines ]
l filter(_.startsWith(‘ERROR”))
[ errors

l filter(_.contains("HDFS”)))
[ HDFS errors

4 map(_split(t)(3))
[ time fields

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.
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map(f: T=U)

filter(f : T = Bool)
AatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

RDD[T] = RDD[U]

RDD[T] = RDDIT]

RDD[T] = RDD[U]

RDD[T] = RDDI[T] (Deterministic sampling)
RDD[(K. V)] = RDD[(K, Seq[V])]

reduceByKey(f : (V,V) = V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union() (RDDI[T],RDDI[T]) = RDDIT]
Join() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V]. Seq[W]))]
crossProduct() (RDD[T],RDD[U]) = RDDI(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() : RDD[T] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f : (T, T) = T) RDDI[T] = T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.
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Spark: Overall idea (Tuning)

m A user can indicate which RDDs may get reused and
should be persisted (usually in-memory, but can be spilled
to disk via priority) (persist Or cache).

m A user can also configure the partitioning of the data, and
the algorithm through which nodes are chosen by key
(helps join efficiency, etc).
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Spark: Overall idea (Actions)

m Once you have constructed an RDD with approriate
transformations, the user can perform an action.

m Actions materialize an RDD, fire up the job scheduler, and
cause work to be performed.

m Actions include count, collect, reduce, save.
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Spark: Overall idea

map(f: T=U)

filter(f : T = Bool)
AatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

RDD[T] = RDD[U]

RDD[T] = RDDIT]

RDD[T] = RDD[U]

RDD[T] = RDDI[T] (Deterministic sampling)
RDD[(K. V)] = RDD[(K, Seq[V])]

reduceByKey(f : (V,V) = V) RDDI[(K, V)] = RDD[(K, V)]
Transformations union() (RDDI[T],RDDI[T]) = RDDIT]
Join() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V]. Seq[W]))]
crossProduct() (RDD[T],RDD[U]) = RDDI(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() : RDD[T] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f : (T, T) = T) RDDI[T] = T
lookup(k : K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.
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Spark: Overall idea

m RDDs are immutable and deterministic.

m Easy to launch backup workers for stragglers (clear win
from Map Reduce)

m Easy to relaunch computations from failed nodes.

m Computations are computed lazily, which allows for rich
optimizations for locality/partitioning by a job scheduler and
query planner.



Map Reduce & Spark
LSpark

L Simple example

Spark

Spark

m Simple example



Map Reduce & Spark
LSpark

L Simple example

Example: Log querying

val lines = sc.textFile("hdfs://path/to/log")
val errors = lines.filter(_.startsWith ("ERROR"))
errors.cache ()
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Example: Log querying

errors.filter (_.contains ("MySQL") ) .count ()
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Example: Log querying

(errors.filter (_.contains ("HDFS"))
.map (_.split ("\t") (3))
.collect ())
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Example: Log querying

[ lines ]
l filter(_.startsWith(‘ERROR”))
[ errors

l filter(_.contains("HDFS”)))
[ HDFS errors

4 map(_split(t)(3))
[ time fields

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.
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RDD Representation

Operation Meaning
partitions() Return a list of Partition objects
preferredLocations(p) | List nodes where partition p can be

accessed faster due to data locality
dependencies() Return a list of dependencies

iterator(p, parentlters)

Compute the elements of partition p
given iterators for its parent partitions

partitioner()

Return metadata specifying whether
the RDD is hash/range partitioned

Table 3: Interface used to represent RDDs in Spark.
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Narrow vs Wide Dependencies

Narrow Dependencies: Wide Dependencies:

(I1)
(11)

map, filter groupByKey

join with inputs
co-partitioned

CTICTY

join with inputs not
co-partitioned

union
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Job Scheduling

A
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Example: Word Count

val m = documents.flatMap (
_._2.split ("\\s+")
.map (word => (word, "1")))
val r = m.reduceByKey (
(a, b) => (a.toInt + b.tolInt).toString)

// do we need a combine step?




Map Reduce & Spark
LSpark

L More Examples

Example: Reverse Index

val m = documents.flatMap (
doc =>
(doc._2.split ("\\s+")
.distinct
.map (word => (word, doc._1))))
val r = m.reduceByKey (
(a, b) => a + "\n" + b)
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Example: Grep

def search (keyword: String) = {
(documents
.filter(_._2.contains (keyword))
.map(_._1)

.reduce((a, b) => (a + "\n" + b)))
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Example: Page Rank

val links = spark.textFile(...).map(...).persist ()
var ranks // RDD of (URL, rank) pairs
for (i <= 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs

// with the contributions sent by each page

val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>
links.map (dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks

ranks = (contribs.reduceByKey ((x,y) => x+y)
.mapValues (sum => a/N + (l-a)+*sum))
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Example: Page Rank

input file ]m—ap>[ links | [ ranks, |
join
contribs,
reduce + map

ranks,

contribs,

ranks,

contribs,
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Conclusion?

m Can anything really be dead?
m Is Map Reduce dead?

m Is Spark the last word?

m Questions?
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L Shameless plug

Space Monkey!

m Large scale storage

m Distributed system design and implementation
m Security and cryptography engineering

m Erasure codes

m Monitoring and sooo much data
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Space Monkey!

Come work with us!
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