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Figure 1: Replicated state machine architecture. The con-
sensus algorithm manages a replicated log containing state
machine commands from clients. The state machines process
identical sequences of commands from the logs, so they pro-
duce the same outputs.

used to solve a variety of fault tolerance problems in dis-
tributed systems. For example, large-scale systems that
have a single cluster leader, such as GFS [8], HDFS [38],
and RAMCloud [33], typically use a separate replicated
state machine to manage leader election and store config-
uration information that must survive leader crashes. Ex-
amples of replicated state machines include Chubby [2]
and ZooKeeper [11].

Replicated state machines are typically implemented
using a replicated log, as shown in Figure 1. Each server
stores a log containing a series of commands, which its
state machine executes in order. Each log contains the
same commands in the same order, so each state ma-
chine processes the same sequence of commands. Since
the state machines are deterministic, each computes the
same state and the same sequence of outputs.

Keeping the replicated log consistent is the job of the
consensus algorithm. The consensus module on a server
receives commands from clients and adds them to its log.
It communicates with the consensus modules on other
servers to ensure that every log eventually contains the
same requests in the same order, even if some servers fail.
Once commands are properly replicated, each server’s
state machine processes them in log order, and the out-
puts are returned to clients. As a result, the servers appear
to form a single, highly reliable state machine.

Consensus algorithms for practical systems typically
have the following properties:
• They ensure safety (never returning an incorrect re-

sult) under all non-Byzantine conditions, including
network delays, partitions, and packet loss, duplica-
tion, and reordering.

• They are fully functional (available) as long as any
majority of the servers are operational and can com-
municate with each other and with clients. Thus, a
typical cluster of five servers can tolerate the failure
of any two servers. Servers are assumed to fail by
stopping; they may later recover from state on stable
storage and rejoin the cluster.

• They do not depend on timing to ensure the consis-

tency of the logs: faulty clocks and extreme message
delays can, at worst, cause availability problems.

• In the common case, a command can complete as
soon as a majority of the cluster has responded to a
single round of remote procedure calls; a minority of
slow servers need not impact overall system perfor-
mance.

3 What’s wrong with Paxos?
Over the last ten years, Leslie Lamport’s Paxos proto-

col [15] has become almost synonymous with consensus:
it is the protocol most commonly taught in courses, and
most implementations of consensus use it as a starting
point. Paxos first defines a protocol capable of reaching
agreement on a single decision, such as a single replicated
log entry. We refer to this subset as single-decree Paxos.
Paxos then combines multiple instances of this protocol to
facilitate a series of decisions such as a log (multi-Paxos).
Paxos ensures both safety and liveness, and it supports
changes in cluster membership. Its correctness has been
proven, and it is efficient in the normal case.

Unfortunately, Paxos has two significant drawbacks.
The first drawback is that Paxos is exceptionally diffi-
cult to understand. The full explanation [15] is notori-
ously opaque; few people succeed in understanding it, and
only with great effort. As a result, there have been several
attempts to explain Paxos in simpler terms [16, 20, 21].
These explanations focus on the single-decree subset, yet
they are still challenging. In an informal survey of atten-
dees at NSDI 2012, we found few people who were com-
fortable with Paxos, even among seasoned researchers.
We struggled with Paxos ourselves; we were not able to
understand the complete protocol until after reading sev-
eral simplified explanations and designing our own alter-
native protocol, a process that took almost a year.

We hypothesize that Paxos’ opaqueness derives from
its choice of the single-decree subset as its foundation.
Single-decree Paxos is dense and subtle: it is divided into
two stages that do not have simple intuitive explanations
and cannot be understood independently. Because of this,
it is difficult to develop intuitions about why the single-
decree protocol works. The composition rules for multi-
Paxos add significant additional complexity and subtlety.
We believe that the overall problem of reaching consensus
on multiple decisions (i.e., a log instead of a single entry)
can be decomposed in other ways that are more direct and
obvious.

The second problem with Paxos is that it does not pro-
vide a good foundation for building practical implemen-
tations. One reason is that there is no widely agreed-
upon algorithm for multi-Paxos. Lamport’s descriptions
are mostly about single-decree Paxos; he sketched possi-
ble approaches to multi-Paxos, but many details are miss-
ing. There have been several attempts to flesh out and op-
timize Paxos, such as [26], [39], and [13], but these differ

2
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5. The Raft consensus algorithm

Invoked by candidates to gather votes (§5.2).

Arguments:

term candidate’s term
candidateId candidate requesting vote

lastLogIndex index of candidate’s last log entry (§5.4)
lastLogTerm term of candidate’s last log entry (§5.4)

Results:

term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)

2. If votedFor is null or candidateId, and candidate’s log is at

least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

RequestVote RPC

Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:
term leader’s term

leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones

prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit leader’s commitIndex

Results:

term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm (§5.3)

3. If an existing entry conflicts with a new one (same index

but different terms), delete the existing entry and all that
follow it (§5.3)

4. Append any new entries not already in the log
5. If leaderCommit > commitIndex, set commitIndex =

min(leaderCommit, index of last new entry)

AppendEntries RPC

Persistent state on all servers:
(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to 0
on first boot, increases monotonically)

votedFor candidateId that received vote in current

term (or null if none)
log[] log entries; each entry contains command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:
commitIndex index of highest log entry known to be

committed (initialized to 0, increases

monotonically)
lastApplied index of highest log entry applied to state

machine (initialized to 0, increases

monotonically)

Volatile state on leaders:

(Reinitialized after election)
nextIndex[] for each server, index of the next log entry

to send to that server (initialized to leader

last log index + 1)
matchIndex[] for each server, index of highest log entry

known to be replicated on server
(initialized to 0, increases monotonically)

State

All Servers:
• If commitIndex > lastApplied: increment lastApplied, apply

log[lastApplied] to state machine (§5.3)
• If RPC request or response contains term T > currentTerm:

set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):
• Respond to RPCs from candidates and leaders

• If election timeout elapses without receiving AppendEntries
RPC from current leader or granting vote to candidate:

convert to candidate

Candidates (§5.2):

• On conversion to candidate, start election:

• Increment currentTerm
• Vote for self

• Reset election timer

• Send RequestVote RPCs to all other servers
• If votes received from majority of servers: become leader

• If AppendEntries RPC received from new leader: convert to
follower

• If election timeout elapses: start new election

Leaders:
• Upon election: send initial empty AppendEntries RPCs

(heartbeat) to each server; repeat during idle periods to
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respond after entry applied to state machine (§5.3)
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• If successful: update nextIndex and matchIndex for
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• If there exists an N such that N > commitIndex, a majority
of matchIndex[i] ≥ N, and log[N].term == currentTerm:

set commitIndex = N (§5.3, §5.4).

Rules for Servers

Figure 2: A condensed summary of the Raft consensus algorithm (excluding membership changes and log compaction). The server
behavior in the upper-left box is described as a set of rules that trigger independently and repeatedly. Section numbers such as §5.2
indicate where particular features are discussed. A formal specification [31] describes the algorithm more precisely.
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Election Safety: at most one leader can be elected in a
given term. §5.2

Leader Append-Only: a leader never overwrites or deletes
entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same
index and term, then the logs are identical in all entries
up through the given index. §5.3

Leader Completeness: if a log entry is committed in a
given term, then that entry will be present in the logs
of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry
at a given index to its state machine, no other server
will ever apply a different log entry for the same index.
§5.4.3

Figure 3: Raft guarantees that each of these properties is true
at all times. The section numbers indicate where each prop-
erty is discussed.

from clients and replicate them across the cluster,
forcing the other logs to agree with its own (Sec-
tion 5.3).

• Safety: the key safety property for Raft is the State
Machine Safety Property in Figure 3: if any server
has applied a particular log entry to its state machine,
then no other server may apply a different command
for the same log index. Section 5.4 describes how
Raft ensures this property; the solution involves an
additional restriction on the election mechanism de-
scribed in Section 5.2.

After presenting the consensus algorithm, this section dis-
cusses the issue of availability and the role of timing in the
system.

5.1 Raft basics
A Raft cluster contains several servers; five is a typical

number, which allows the system to tolerate two failures.
At any given time each server is in one of three states:
leader, follower, or candidate. In normal operation there
is exactly one leader and all of the other servers are fol-
lowers. Followers are passive: they issue no requests on
their own but simply respond to requests from leaders
and candidates. The leader handles all client requests (if
a client contacts a follower, the follower redirects it to the
leader). The third state, candidate, is used to elect a new
leader as described in Section 5.2. Figure 4 shows the
states and their transitions; the transitions are discussed
below.

Raft divides time into terms of arbitrary length, as
shown in Figure 5. Terms are numbered with consecutive
integers. Each term begins with an election, in which one
or more candidates attempt to become leader as described
in Section 5.2. If a candidate wins the election, then it
serves as leader for the rest of the term. In some situations
an election will result in a split vote. In this case the term
will end with no leader; a new term (with a new election)

Figure 4: Server states. Followers only respond to requests
from other servers. If a follower receives no communication,
it becomes a candidate and initiates an election. A candidate
that receives votes from a majority of the full cluster becomes
the new leader. Leaders typically operate until they fail.

Figure 5: Time is divided into terms, and each term begins
with an election. After a successful election, a single leader
manages the cluster until the end of the term. Some elections
fail, in which case the term ends without choosing a leader.
The transitions between terms may be observed at different
times on different servers.

will begin shortly. Raft ensures that there is at most one
leader in a given term.

Different servers may observe the transitions between
terms at different times, and in some situations a server
may not observe an election or even entire terms. Terms
act as a logical clock [14] in Raft, and they allow servers
to detect obsolete information such as stale leaders. Each
server stores a current term number, which increases
monotonically over time. Current terms are exchanged
whenever servers communicate; if one server’s current
term is smaller than the other’s, then it updates its current
term to the larger value. If a candidate or leader discovers
that its term is out of date, it immediately reverts to fol-
lower state. If a server receives a request with a stale term
number, it rejects the request.

Raft servers communicate using remote procedure calls
(RPCs), and the basic consensus algorithm requires only
two types of RPCs. RequestVote RPCs are initiated by
candidates during elections (Section 5.2), and Append-
Entries RPCs are initiated by leaders to replicate log en-
tries and to provide a form of heartbeat (Section 5.3). Sec-
tion 7 adds a third RPC for transferring snapshots between
servers. Servers retry RPCs if they do not receive a re-
sponse in a timely manner, and they issue RPCs in parallel
for best performance.

5.2 Leader election
Raft uses a heartbeat mechanism to trigger leader elec-

tion. When servers start up, they begin as followers. A
server remains in follower state as long as it receives valid
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at all times. The section numbers indicate where each prop-
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manages the cluster until the end of the term. Some elections
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will begin shortly. Raft ensures that there is at most one
leader in a given term.

Different servers may observe the transitions between
terms at different times, and in some situations a server
may not observe an election or even entire terms. Terms
act as a logical clock [14] in Raft, and they allow servers
to detect obsolete information such as stale leaders. Each
server stores a current term number, which increases
monotonically over time. Current terms are exchanged
whenever servers communicate; if one server’s current
term is smaller than the other’s, then it updates its current
term to the larger value. If a candidate or leader discovers
that its term is out of date, it immediately reverts to fol-
lower state. If a server receives a request with a stale term
number, it rejects the request.

Raft servers communicate using remote procedure calls
(RPCs), and the basic consensus algorithm requires only
two types of RPCs. RequestVote RPCs are initiated by
candidates during elections (Section 5.2), and Append-
Entries RPCs are initiated by leaders to replicate log en-
tries and to provide a form of heartbeat (Section 5.3). Sec-
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RequestVote - initiated by candidates, used during
elections.
AppendEntries - initiated by leaders for heartbeats and log
replication.
InstallSnapshot - used for log compaction extension

RPC properties

RPCs are retried until responses are received.
RPCs are idempotent.
RPCs are issued in parallel wherever possible.
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any log entries).
If a server hears no AppendEntries call before an election
timeout, it begins an election.
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Elections

Follower increments its current term and transitions to
candidate state.
Votes for itself and requests votes from the other servers.

Election termination

One of three things:
it wins the election; now it’s the leader
it finds out about another leader; now it’s a follower
neither previous case happens before another election
timeout; the election starts over.
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Voting

Winning is assumed if you receive a majority of votes.
Each follower will vote for at most one candidate per term,
first-come-first-served.
At any time if any server hears a heartbeat message with a
leader in the current term or newer, it assumes the source
is the leader.

Split votes

Randomized election timeouts!
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Election Safety: at most one leader can be elected in a
given term. §5.2

Leader Append-Only: a leader never overwrites or deletes
entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same
index and term, then the logs are identical in all entries
up through the given index. §5.3

Leader Completeness: if a log entry is committed in a
given term, then that entry will be present in the logs
of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry
at a given index to its state machine, no other server
will ever apply a different log entry for the same index.
§5.4.3

Figure 3: Raft guarantees that each of these properties is true
at all times. The section numbers indicate where each prop-
erty is discussed.

from clients and replicate them across the cluster,
forcing the other logs to agree with its own (Sec-
tion 5.3).

• Safety: the key safety property for Raft is the State
Machine Safety Property in Figure 3: if any server
has applied a particular log entry to its state machine,
then no other server may apply a different command
for the same log index. Section 5.4 describes how
Raft ensures this property; the solution involves an
additional restriction on the election mechanism de-
scribed in Section 5.2.

After presenting the consensus algorithm, this section dis-
cusses the issue of availability and the role of timing in the
system.

5.1 Raft basics
A Raft cluster contains several servers; five is a typical

number, which allows the system to tolerate two failures.
At any given time each server is in one of three states:
leader, follower, or candidate. In normal operation there
is exactly one leader and all of the other servers are fol-
lowers. Followers are passive: they issue no requests on
their own but simply respond to requests from leaders
and candidates. The leader handles all client requests (if
a client contacts a follower, the follower redirects it to the
leader). The third state, candidate, is used to elect a new
leader as described in Section 5.2. Figure 4 shows the
states and their transitions; the transitions are discussed
below.

Raft divides time into terms of arbitrary length, as
shown in Figure 5. Terms are numbered with consecutive
integers. Each term begins with an election, in which one
or more candidates attempt to become leader as described
in Section 5.2. If a candidate wins the election, then it
serves as leader for the rest of the term. In some situations
an election will result in a split vote. In this case the term
will end with no leader; a new term (with a new election)

Figure 4: Server states. Followers only respond to requests
from other servers. If a follower receives no communication,
it becomes a candidate and initiates an election. A candidate
that receives votes from a majority of the full cluster becomes
the new leader. Leaders typically operate until they fail.

Figure 5: Time is divided into terms, and each term begins
with an election. After a successful election, a single leader
manages the cluster until the end of the term. Some elections
fail, in which case the term ends without choosing a leader.
The transitions between terms may be observed at different
times on different servers.

will begin shortly. Raft ensures that there is at most one
leader in a given term.

Different servers may observe the transitions between
terms at different times, and in some situations a server
may not observe an election or even entire terms. Terms
act as a logical clock [14] in Raft, and they allow servers
to detect obsolete information such as stale leaders. Each
server stores a current term number, which increases
monotonically over time. Current terms are exchanged
whenever servers communicate; if one server’s current
term is smaller than the other’s, then it updates its current
term to the larger value. If a candidate or leader discovers
that its term is out of date, it immediately reverts to fol-
lower state. If a server receives a request with a stale term
number, it rejects the request.

Raft servers communicate using remote procedure calls
(RPCs), and the basic consensus algorithm requires only
two types of RPCs. RequestVote RPCs are initiated by
candidates during elections (Section 5.2), and Append-
Entries RPCs are initiated by leaders to replicate log en-
tries and to provide a form of heartbeat (Section 5.3). Sec-
tion 7 adds a third RPC for transferring snapshots between
servers. Servers retry RPCs if they do not receive a re-
sponse in a timely manner, and they issue RPCs in parallel
for best performance.

5.2 Leader election
Raft uses a heartbeat mechanism to trigger leader elec-

tion. When servers start up, they begin as followers. A
server remains in follower state as long as it receives valid
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RPCs from a leader or candidate. Leaders send periodic
heartbeats (AppendEntries RPCs that carry no log entries)
to all followers in order to maintain their authority. If a
follower receives no communication over a period of time
called the election timeout, then it assumes there is no vi-
able leader and begins an election to choose a new leader.

To begin an election, a follower increments its current
term and transitions to candidate state. It then votes for
itself and issues RequestVote RPCs in parallel to each of
the other servers in the cluster. A candidate continues in
this state until one of three things happens: (a) it wins the
election, (b) another server establishes itself as leader, or
(c) a period of time goes by with no winner. These out-
comes are discussed separately in the paragraphs below.

A candidate wins an election if it receives votes from
a majority of the servers in the full cluster for the same
term. Each server will vote for at most one candidate in a
given term, on a first-come-first-served basis (note: Sec-
tion 5.4 adds an additional restriction on votes). The ma-
jority rule ensures that at most one candidate can win the
election for a particular term (the Election Safety Prop-
erty in Figure 3). Once a candidate wins an election, it
becomes leader. It then sends heartbeat messages to all of
the other servers to establish its authority and prevent new
elections.

While waiting for votes, a candidate may receive an
AppendEntries RPC from another server claiming to be
leader. If the leader’s term (included in its RPC) is at least
as large as the candidate’s current term, then the candidate
recognizes the leader as legitimate and returns to follower
state. If the term in the RPC is smaller than the candidate’s
current term, then the candidate rejects the RPC and con-
tinues in candidate state.

The third possible outcome is that a candidate neither
wins nor loses the election: if many followers become
candidates at the same time, votes could be split so that
no candidate obtains a majority. When this happens, each
candidate will time out and start a new election by incre-
menting its term and initiating another round of Request-
Vote RPCs. However, without extra measures split votes
could repeat indefinitely.

Raft uses randomized election timeouts to ensure that
split votes are rare and that they are resolved quickly. To
prevent split votes in the first place, election timeouts are
chosen randomly from a fixed interval (e.g., 150–300ms).
This spreads out the servers so that in most cases only a
single server will time out; it wins the election and sends
heartbeats before any other servers time out. The same
mechanism is used to handle split votes. Each candidate
restarts its randomized election timeout at the start of an
election, and it waits for that timeout to elapse before
starting the next election; this reduces the likelihood of
another split vote in the new election. Section 9.3 shows
that this approach elects a leader rapidly.

Figure 6: Logs are composed of entries, which are numbered
sequentially. Each entry contains the term in which it was
created (the number in each box) and a command for the state
machine. An entry is considered committed if it is safe for that
entry to be applied to state machines.

Elections are an example of how understandability
guided our choice between design alternatives. Initially
we planned to use a ranking system: each candidate was
assigned a unique rank, which was used to select between
competing candidates. If a candidate discovered another
candidate with higher rank, it would return to follower
state so that the higher ranking candidate could more eas-
ily win the next election. We found that this approach
created subtle issues around availability (a lower-ranked
server might need to time out and become a candidate
again if a higher-ranked server fails, but if it does so too
soon, it can reset progress towards electing a leader). We
made adjustments to the algorithm several times, but after
each adjustment new corner cases appeared. Eventually
we concluded that the randomized retry approach is more
obvious and understandable.

5.3 Log replication
Once a leader has been elected, it begins servicing

client requests. Each client request contains a command to
be executed by the replicated state machines. The leader
appends the command to its log as a new entry, then is-
sues AppendEntries RPCs in parallel to each of the other
servers to replicate the entry. When the entry has been
safely replicated (as described below), the leader applies
the entry to its state machine and returns the result of that
execution to the client. If followers crash or run slowly,
or if network packets are lost, the leader retries Append-
Entries RPCs indefinitely (even after it has responded to
the client) until all followers eventually store all log en-
tries.

Logs are organized as shown in Figure 6. Each log en-
try stores a state machine command along with the term
number when the entry was received by the leader. The
term numbers in log entries are used to detect inconsis-
tencies between logs and to ensure some of the properties
in Figure 3. Each log entry also has an integer index iden-
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Leaders service client requests.
Client request commands are added to the leader’s log.
Leaders then pester followers to add the command to their
logs via AppendEntries.
Entries are identified by their term number and log index.
Entries are uncommitted until the leader has determined
that a majority of servers have the entry.
AppendEntries calls (including heartbeats) indicate the
highest committed index.
Committed entries are passed off to each server’s state
machine in order.
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Logs match

Every log entry is given a term id.
There is only one leader per term, and leaders never
change log entry indices.
So, given a term id, the log index is unique.
AppendEntries includes the previous term id and log index,
so if that log entry is missing, the follower will reject the call.
The leader will back up and replay the log up to the
offending entry.
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tifying its position in the log.
The leader decides when it is safe to apply a log en-

try to the state machines; such an entry is called commit-
ted. Raft guarantees that committed entries are durable
and will eventually be executed by all of the available
state machines. A log entry is committed once the leader
that created the entry has replicated it on a majority of
the servers (e.g., entry 7 in Figure 6). This also commits
all preceding entries in the leader’s log, including entries
created by previous leaders. Section 5.4 discusses some
subtleties when applying this rule after leader changes,
and it also shows that this definition of commitment is
safe. The leader keeps track of the highest index it knows
to be committed, and it includes that index in future
AppendEntries RPCs (including heartbeats) so that the
other servers eventually find out. Once a follower learns
that a log entry is committed, it applies the entry to its
local state machine (in log order).

We designed the Raft log mechanism to maintain a high
level of coherency between the logs on different servers.
Not only does this simplify the system’s behavior and
make it more predictable, but it is an important component
of ensuring safety. Raft maintains the following proper-
ties, which together constitute the Log Matching Property
in Figure 3:
• If two entries in different logs have the same index

and term, then they store the same command.
• If two entries in different logs have the same index

and term, then the logs are identical in all preceding
entries.

The first property follows from the fact that a leader
creates at most one entry with a given log index in a given
term, and log entries never change their position in the
log. The second property is guaranteed by a simple con-
sistency check performed by AppendEntries. When send-
ing an AppendEntries RPC, the leader includes the index
and term of the entry in its log that immediately precedes
the new entries. If the follower does not find an entry in
its log with the same index and term, then it refuses the
new entries. The consistency check acts as an induction
step: the initial empty state of the logs satisfies the Log
Matching Property, and the consistency check preserves
the Log Matching Property whenever logs are extended.
As a result, whenever AppendEntries returns successfully,
the leader knows that the follower’s log is identical to its
own log up through the new entries.

During normal operation, the logs of the leader and
followers stay consistent, so the AppendEntries consis-
tency check never fails. However, leader crashes can leave
the logs inconsistent (the old leader may not have fully
replicated all of the entries in its log). These inconsisten-
cies can compound over a series of leader and follower
crashes. Figure 7 illustrates the ways in which followers’
logs may differ from that of a new leader. A follower may

Figure 7: When the leader at the top comes to power, it is
possible that any of scenarios (a–f) could occur in follower
logs. Each box represents one log entry; the number in the
box is its term. A follower may be missing entries (a–b), may
have extra uncommitted entries (c–d), or both (e–f). For ex-
ample, scenario (f) could occur if that server was the leader
for term 2, added several entries to its log, then crashed before
committing any of them; it restarted quickly, became leader
for term 3, and added a few more entries to its log; before any
of the entries in either term 2 or term 3 were committed, the
server crashed again and remained down for several terms.

be missing entries that are present on the leader, it may
have extra entries that are not present on the leader, or
both. Missing and extraneous entries in a log may span
multiple terms.

In Raft, the leader handles inconsistencies by forcing
the followers’ logs to duplicate its own. This means that
conflicting entries in follower logs will be overwritten
with entries from the leader’s log. Section 5.4 will show
that this is safe when coupled with one more restriction.

To bring a follower’s log into consistency with its own,
the leader must find the latest log entry where the two
logs agree, delete any entries in the follower’s log after
that point, and send the follower all of the leader’s entries
after that point. All of these actions happen in response
to the consistency check performed by AppendEntries
RPCs. The leader maintains a nextIndex for each follower,
which is the index of the next log entry the leader will
send to that follower. When a leader first comes to power,
it initializes all nextIndex values to the index just after the
last one in its log (11 in Figure 7). If a follower’s log is
inconsistent with the leader’s, the AppendEntries consis-
tency check will fail in the next AppendEntries RPC. Af-
ter a rejection, the leader decrements nextIndex and retries
the AppendEntries RPC. Eventually nextIndex will reach
a point where the leader and follower logs match. When
this happens, AppendEntries will succeed, which removes
any conflicting entries in the follower’s log and appends
entries from the leader’s log (if any). Once AppendEntries
succeeds, the follower’s log is consistent with the leader’s,
and it will remain that way for the rest of the term.

If desired, the protocol can be optimized to reduce the
number of rejected AppendEntries RPCs. For example,
when rejecting an AppendEntries request, the follower

7
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can include the term of the conflicting entry and the first
index it stores for that term. With this information, the
leader can decrement nextIndex to bypass all of the con-
flicting entries in that term; one AppendEntries RPC will
be required for each term with conflicting entries, rather
than one RPC per entry. In practice, we doubt this opti-
mization is necessary, since failures happen infrequently
and it is unlikely that there will be many inconsistent en-
tries.

With this mechanism, a leader does not need to take any
special actions to restore log consistency when it comes to
power. It just begins normal operation, and the logs auto-
matically converge in response to failures of the Append-
Entries consistency check. A leader never overwrites or
deletes entries in its own log (the Leader Append-Only
Property in Figure 3).

This log replication mechanism exhibits the desirable
consensus properties described in Section 2: Raft can ac-
cept, replicate, and apply new log entries as long as a ma-
jority of the servers are up; in the normal case a new entry
can be replicated with a single round of RPCs to a ma-
jority of the cluster; and a single slow follower will not
impact performance.

5.4 Safety
The previous sections described how Raft elects lead-

ers and replicates log entries. However, the mechanisms
described so far are not quite sufficient to ensure that each
state machine executes exactly the same commands in the
same order. For example, a follower might be unavailable
while the leader commits several log entries, then it could
be elected leader and overwrite these entries with new
ones; as a result, different state machines might execute
different command sequences.

This section completes the Raft algorithm by adding a
restriction on which servers may be elected leader. The
restriction ensures that the leader for any given term con-
tains all of the entries committed in previous terms (the
Leader Completeness Property from Figure 3). Given the
election restriction, we then make the rules for commit-
ment more precise. Finally, we present a proof sketch for
the Leader Completeness Property and show how it leads
to correct behavior of the replicated state machine.

5.4.1 Election restriction
In any leader-based consensus algorithm, the leader

must eventually store all of the committed log entries. In
some consensus algorithms, such as Viewstamped Repli-
cation [22], a leader can be elected even if it doesn’t
initially contain all of the committed entries. These al-
gorithms contain additional mechanisms to identify the
missing entries and transmit them to the new leader, ei-
ther during the election process or shortly afterwards. Un-
fortunately, this results in considerable additional mecha-
nism and complexity. Raft uses a simpler approach where
it guarantees that all the committed entries from previous

Figure 8: A time sequence showing why a leader cannot de-
termine commitment using log entries from older terms. In
(a) S1 is leader and partially replicates the log entry at index
2. In (b) S1 crashes; S5 is elected leader for term 3 with votes
from S3, S4, and itself, and accepts a different entry at log
index 2. In (c) S5 crashes; S1 restarts, is elected leader, and
continues replication. At this point, the log entry from term 2
has been replicated on a majority of the servers, but it is not
committed. If S1 crashes as in (d), S5 could be elected leader
(with votes from S2, S3, and S4) and overwrite the entry with
its own entry from term 3. However, if S1 replicates an en-
try from its current term on a majority of the servers before
crashing, as in (e), then this entry is committed (S5 cannot
win an election). At this point all preceding entries in the log
are committed as well.

terms are present on each new leader from the moment of
its election, without the need to transfer those entries to
the leader. This means that log entries only flow in one di-
rection, from leaders to followers, and leaders never over-
write existing entries in their logs.

Raft uses the voting process to prevent a candidate from
winning an election unless its log contains all committed
entries. A candidate must contact a majority of the cluster
in order to be elected, which means that every committed
entry must be present in at least one of those servers. If the
candidate’s log is at least as up-to-date as any other log
in that majority (where “up-to-date” is defined precisely
below), then it will hold all the committed entries. The
RequestVote RPC implements this restriction: the RPC
includes information about the candidate’s log, and the
voter denies its vote if its own log is more up-to-date than
that of the candidate.

Raft determines which of two logs is more up-to-date
by comparing the index and term of the last entries in the
logs. If the logs have last entries with different terms, then
the log with the later term is more up-to-date. If the logs
end with the same term, then whichever log is longer is
more up-to-date.

5.4.2 Committing entries from previous terms
As described in Section 5.3, a leader knows that an en-

try from its current term is committed once that entry is
stored on a majority of the servers. If a leader crashes be-
fore committing an entry, future leaders will attempt to
finish replicating the entry. However, a leader cannot im-
mediately conclude that an entry from a previous term is
committed once it is stored on a majority of servers. Fig-
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when they believe a leader exists, but it’s best to get old
nodes out.



Raft

Other practical concerns

6. Cluster membership changes

Issues

New servers might be incredibly behind - can join as
non-voting members before new configuration is applied
Current leader might not be part of new configuration -
leaders step down after committing configuration and
possibly shouldn’t count themselves as part of the majority.
Cluster can be disrupted by old nodes interferring and
becoming candidates - servers can disregard RequestVote
when they believe a leader exists, but it’s best to get old
nodes out.



Raft

Other practical concerns

6. Cluster membership changes

Issues

New servers might be incredibly behind - can join as
non-voting members before new configuration is applied
Current leader might not be part of new configuration -
leaders step down after committing configuration and
possibly shouldn’t count themselves as part of the majority.
Cluster can be disrupted by old nodes interferring and
becoming candidates - servers can disregard RequestVote
when they believe a leader exists, but it’s best to get old
nodes out.



Raft

Other practical concerns

6. Cluster membership changes

Issues

New servers might be incredibly behind - can join as
non-voting members before new configuration is applied
Current leader might not be part of new configuration -
leaders step down after committing configuration and
possibly shouldn’t count themselves as part of the majority.
Cluster can be disrupted by old nodes interferring and
becoming candidates - servers can disregard RequestVote
when they believe a leader exists, but it’s best to get old
nodes out.



Raft

Other practical concerns

7. Log compaction

Other practical concerns

3 Other practical concerns
6. Cluster membership changes
7. Log compaction
8. Client interaction



Raft

Other practical concerns

7. Log compaction

Snapshotting

Requires interaction with state machine and state machine
serialization.
Snapshot should indicate last included log index.
InstallSnapshot RPC applies a snapshot to a follower when
the follower is farther behind what the log has.



Raft

Other practical concerns

7. Log compaction

Snapshotting

Requires interaction with state machine and state machine
serialization.
Snapshot should indicate last included log index.
InstallSnapshot RPC applies a snapshot to a follower when
the follower is farther behind what the log has.



Raft

Other practical concerns

7. Log compaction

Snapshotting

Requires interaction with state machine and state machine
serialization.
Snapshot should indicate last included log index.
InstallSnapshot RPC applies a snapshot to a follower when
the follower is farther behind what the log has.



Raft

Other practical concerns

7. Log compaction

Snapshotting

Requires interaction with state machine and state machine
serialization.
Snapshot should indicate last included log index.
InstallSnapshot RPC applies a snapshot to a follower when
the follower is farther behind what the log has.



Raft

Other practical concerns

8. Client interaction

Other practical concerns

3 Other practical concerns
6. Cluster membership changes
7. Log compaction
8. Client interaction



Raft

Other practical concerns

8. Client interaction

Linearizability

Clients must make all operations idempotent, or attach unique
serial numbers to all commands, in case the request is received
but the response is lost.

Read-only ops

Leaders should know the latest information on what entries
are committed, so at least one heartbeat or operation
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Leaders may have gotten deposed, so they need to check
with the cluster before responding to read-only requests.
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Figure 14: A scatter plot comparing 43 participants’ perfor-
mance on the Raft and Paxos quizzes. Points above the diag-
onal (33) represent participants who scored higher for Raft.

lecture covered enough material to create an equivalent
replicated state machine, including single-decree Paxos,
multi-decree Paxos, reconfiguration, and a few optimiza-
tions needed in practice (such as leader election). The
quizzes tested basic understanding of the algorithms and
also required students to reason about corner cases. Each
student watched one video, took the corresponding quiz,
watched the second video, and took the second quiz.
About half of the participants did the Paxos portion first
and the other half did the Raft portion first in order to
account for both individual differences in performance
and experience gained from the first portion of the study.
We compared participants’ scores on each quiz to deter-
mine whether participants showed a better understanding
of Raft.

We tried to make the comparison between Paxos and
Raft as fair as possible. The experiment favored Paxos in
two ways: 15 of the 43 participants reported having some
prior experience with Paxos, and the Paxos video is 14%
longer than the Raft video. As summarized in Table 1, we
have taken steps to mitigate potential sources of bias. All
of our materials are available for review [28, 31].

On average, participants scored 4.9 points higher on the
Raft quiz than on the Paxos quiz (out of a possible 60
points, the mean Raft score was 25.7 and the mean Paxos
score was 20.8); Figure 14 shows their individual scores.
A paired t-test states that, with 95% confidence, the true
distribution of Raft scores has a mean at least 2.5 points
larger than the true distribution of Paxos scores.

We also created a linear regression model that predicts
a new student’s quiz scores based on three factors: which
quiz they took, their degree of prior Paxos experience, and
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Figure 15: Using a 5-point scale, participants were asked
(left) which algorithm they felt would be easier to implement
in a functioning, correct, and efficient system, and (right)
which would be easier to explain to a CS graduate student.

the order in which they learned the algorithms. The model
predicts that the choice of quiz produces a 12.5-point dif-
ference in favor of Raft. This is significantly higher than
the observed difference of 4.9 points, because many of the
actual students had prior Paxos experience, which helped
Paxos considerably, whereas it helped Raft slightly less.
Curiously, the model also predicts scores 6.3 points lower
on Raft for people that have already taken the Paxos quiz;
although we don’t know why, this does appear to be sta-
tistically significant.

We also surveyed participants after their quizzes to see
which algorithm they felt would be easier to implement
or explain; these results are shown in Figure 15. An over-
whelming majority of participants reported Raft would be
easier to implement and explain (33 of 41 for each ques-
tion). However, these self-reported feelings may be less
reliable than participants’ quiz scores, and participants
may have been biased by knowledge of our hypothesis
that Raft is easier to understand.

A detailed discussion of the Raft user study is available
at [31].

9.2 Correctness
We have developed a formal specification and a proof

of safety for the consensus mechanism described in Sec-
tion 5. The formal specification [31] makes the informa-
tion summarized in Figure 2 completely precise using the
TLA+ specification language [17]. It is about 400 lines
long and serves as the subject of the proof. It is also use-
ful on its own for anyone implementing Raft. We have
mechanically proven the Log Completeness Property us-
ing the TLA proof system [7]. However, this proof relies
on invariants that have not been mechanically checked
(for example, we have not proven the type safety of the
specification). Furthermore, we have written an informal
proof [31] of the State Machine Safety property which
is complete (it relies on the specification alone) and rela-

Concern Steps taken to mitigate bias Materials for review [28, 31]
Equal lecture quality Same lecturer for both. Paxos lecture based on and improved from exist-

ing materials used in several universities. Paxos lecture is 14% longer.
videos

Equal quiz difficulty Questions grouped in difficulty and paired across exams. quizzes
Fair grading Used rubric. Graded in random order, alternating between quizzes. rubric

Table 1: Concerns of possible bias against Paxos in the study, steps taken to counter each, and additional materials available.
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distribution of Raft scores has a mean at least 2.5 points
larger than the true distribution of Paxos scores.

We also created a linear regression model that predicts
a new student’s quiz scores based on three factors: which
quiz they took, their degree of prior Paxos experience, and
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Figure 15: Using a 5-point scale, participants were asked
(left) which algorithm they felt would be easier to implement
in a functioning, correct, and efficient system, and (right)
which would be easier to explain to a CS graduate student.

the order in which they learned the algorithms. The model
predicts that the choice of quiz produces a 12.5-point dif-
ference in favor of Raft. This is significantly higher than
the observed difference of 4.9 points, because many of the
actual students had prior Paxos experience, which helped
Paxos considerably, whereas it helped Raft slightly less.
Curiously, the model also predicts scores 6.3 points lower
on Raft for people that have already taken the Paxos quiz;
although we don’t know why, this does appear to be sta-
tistically significant.

We also surveyed participants after their quizzes to see
which algorithm they felt would be easier to implement
or explain; these results are shown in Figure 15. An over-
whelming majority of participants reported Raft would be
easier to implement and explain (33 of 41 for each ques-
tion). However, these self-reported feelings may be less
reliable than participants’ quiz scores, and participants
may have been biased by knowledge of our hypothesis
that Raft is easier to understand.

A detailed discussion of the Raft user study is available
at [31].

9.2 Correctness
We have developed a formal specification and a proof

of safety for the consensus mechanism described in Sec-
tion 5. The formal specification [31] makes the informa-
tion summarized in Figure 2 completely precise using the
TLA+ specification language [17]. It is about 400 lines
long and serves as the subject of the proof. It is also use-
ful on its own for anyone implementing Raft. We have
mechanically proven the Log Completeness Property us-
ing the TLA proof system [7]. However, this proof relies
on invariants that have not been mechanically checked
(for example, we have not proven the type safety of the
specification). Furthermore, we have written an informal
proof [31] of the State Machine Safety property which
is complete (it relies on the specification alone) and rela-

Concern Steps taken to mitigate bias Materials for review [28, 31]
Equal lecture quality Same lecturer for both. Paxos lecture based on and improved from exist-

ing materials used in several universities. Paxos lecture is 14% longer.
videos

Equal quiz difficulty Questions grouped in difficulty and paired across exams. quizzes
Fair grading Used rubric. Graded in random order, alternating between quizzes. rubric

Table 1: Concerns of possible bias against Paxos in the study, steps taken to counter each, and additional materials available.
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Figure 16: The time to detect and replace a crashed leader.
The top graph varies the amount of randomness in election
timeouts, and the bottom graph scales the minimum election
timeout. Each line represents 1000 trials (except for 100 tri-
als for “150–150ms”) and corresponds to a particular choice
of election timeouts; for example, “150–155ms” means that
election timeouts were chosen randomly and uniformly be-
tween 150ms and 155ms. The measurements were taken on a
cluster of five servers with a broadcast time of roughly 15ms.
Results for a cluster of nine servers are similar.

tively precise (it is about 3500 words long).

9.3 Performance
Raft’s performance is similar to other consensus algo-

rithms such as Paxos. The most important case for per-
formance is when an established leader is replicating new
log entries. Raft achieves this using the minimal number
of messages (a single round-trip from the leader to half the
cluster). It is also possible to further improve Raft’s per-
formance. For example, it easily supports batching and
pipelining requests for higher throughput and lower la-
tency. Various optimizations have been proposed in the
literature for other algorithms; many of these could be ap-
plied to Raft, but we leave this to future work.

We used our Raft implementation to measure the per-
formance of Raft’s leader election algorithm and answer
two questions. First, does the election process converge
quickly? Second, what is the minimum downtime that can
be achieved after leader crashes?

To measure leader election, we repeatedly crashed the
leader of a cluster of five servers and timed how long it
took to detect the crash and elect a new leader (see Fig-
ure 16). To generate a worst-case scenario, the servers in
each trial had different log lengths, so some candidates
were not eligible to become leader. Furthermore, to en-
courage split votes, our test script triggered a synchro-
nized broadcast of heartbeat RPCs from the leader before
terminating its process (this approximates the behavior
of the leader replicating a new log entry prior to crash-

ing). The leader was crashed uniformly randomly within
its heartbeat interval, which was half of the minimum
election timeout for all tests. Thus, the smallest possible
downtime was about half of the minimum election time-
out.

The top graph in Figure 16 shows that a small amount
of randomization in the election timeout is enough to
avoid split votes in elections. In the absence of random-
ness, leader election consistently took longer than 10 sec-
onds in our tests due to many split votes. Adding just 5ms
of randomness helps significantly, resulting in a median
downtime of 287ms. Using more randomness improves
worst-case behavior: with 50ms of randomness the worst-
case completion time (over 1000 trials) was 513ms.

The bottom graph in Figure 16 shows that downtime
can be reduced by reducing the election timeout. With
an election timeout of 12–24ms, it takes only 35ms on
average to elect a leader (the longest trial took 152ms).
However, lowering the timeouts beyond this point violates
Raft’s timing requirement: leaders have difficulty broad-
casting heartbeats before other servers start new elections.
This can cause unnecessary leader changes and lower
overall system availability. We recommend using a con-
servative election timeout such as 150–300ms; such time-
outs are unlikely to cause unnecessary leader changes and
will still provide good availability.

10 Related work
There have been numerous publications related to con-

sensus algorithms, many of which fall into one of the fol-
lowing categories:
• Lamport’s original description of Paxos [15], and at-

tempts to explain it more clearly [16, 20, 21].
• Elaborations of Paxos, which fill in missing details

and modify the algorithm to provide a better founda-
tion for implementation [26, 39, 13].

• Systems that implement consensus algorithms, such
as Chubby [2, 4], ZooKeeper [11, 12], and Span-
ner [6]. The algorithms for Chubby and Spanner
have not been published in detail, though both claim
to be based on Paxos. ZooKeeper’s algorithm has
been published in more detail, but it is quite different
from Paxos.

• Performance optimizations that can be applied to
Paxos [18, 19, 3, 25, 1, 27].

• Oki and Liskov’s Viewstamped Replication (VR), an
alternative approach to consensus developed around
the same time as Paxos. The original description [29]
was intertwined with a protocol for distributed trans-
actions, but the core consensus protocol has been
separated in a recent update [22]. VR uses a leader-
based approach with many similarities to Raft.

The greatest difference between Raft and Paxos is
Raft’s strong leadership: Raft uses leader election as an
essential part of the consensus protocol, and it concen-
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